
Introduction

Ecological footprint (EF), one of the sustainable devel-

opment indicators, was proposed by William, an ecological

economist of Canada in the early 1990s and improved and

developed by his doctoral student, Wackernagel, in 1996 [1,

2]. The model quantitatively reflects human activity influ-

ence on the natural resources that provide ecological ser-

vices and natural products. EF integrates a variety of rele-

vant resources used by one region into a common unit,

“global hectares,” namely bio-productive areas and then the

consumption of natural resources can be tracked. Thus

comparing it to the available ecological capacity, the

region’s sustainable status can be judged according to the

ecological deficit being negative or positive.

EF answers a specific research question: how much of

the regenerative biological capacity of the region is

demanded in a given period by a given human activity,

which may be one of the processes of consuming resources,

producing goods, or supplying a service [3]. It has emerged

as a popular concept and approach for sustainability mea-

surement. The method has been applied at various scales,

including the whole globe, nations, provinces, cities, com-

munities, and individuals [4-10]. The footprint approach

has also been applied to related notions such as energy, car-

bon, and water footprints, and has been combined with such

hotspots as climate change, environmental risk assessment,

and policy analysis [11-17].

However, the EF method is based on the following

assumptions: 

(1) there exists a suppositional concept “hypothetical land

area”
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(2) we could reduce all ecological problems to these land

areas

(3) total land demand could exceed total land supply in one

region [2]

So inevitably EF itself has some flaws. It is a static indi-

cator, which means it can’t answer some other scientific

questions, for example: how to accurately simulate EF

development in the past for a long time series and forecast

EF development trend in the future, according to the fitting

model, and then provide reasonable and practical policy

recommendations for regional sustainable development

based on the estimated trend of TEF [18, 19]. Some critics

argue that EF analysis could not provide a dynamic window

for the future but rather a snapshot of real time [20, 21]. EF

analysis produces static estimates, whereas both nature and

economy are a dynamic system. So critics regard EF to be

barely a surplus warning tool playing a weak decision sup-

port role.

To help decision-makers track ecological consumption

over time, many researchers have been working on EF time

series at different spatial scales to provide effective support

for regional sustainable development [22-25]. Medved pre-

dicted the future EF of Slovenia for 2020 by analyzing the

documents promoting energy conservation and renewable

energy sources, without using any simulation model [25].

Wu used the autoregressive integrated moving average

(ARIMA) model to predict temporal variation of water EF

in Guangzhou, China [26]. Yue  introduced two indices of

“change rate” and “scissors difference” by a polynomial

regression analysis to quantitatively describe the develop-

ment trends of EF time series [18]. Jia simulated and pre-

dicted EF from 1949 to 2006 in Henan province of China

using the ARIMA model [7]. In addition, Li simulated and

forecast the urban total ecological footprint by using the

radial basis function neural network (RBFNN) in Wuhan,

China [8]. All the TEF simulation models can be classified

into the following two types. Type A is the ARIMA model.

The basic idea of this type is that the values of the variables

are supposed to be a linear or non-linear combination of past

values and past errors, and the future values of the time

series can be simulated and predicted only from past values

and present values, not considering any other factors. Type

B: This type of method considered some impact factors on

TEF, such as RBFNN and the polynomial regression

method. The back propagation artificial neural network

(BPANN), applied in this paper, belongs to this type. 

None of these studies has provided us a definite effec-

tive tool for predicting the development trend of EF in the

future, and what we should choose as impact factors or dri-

vers of EF development. Further work is needed to find

appropriate approaches for simulating the development

trend of EF and to give us valid, plausible results and sound

advice for policy-making in a specific region. 

Some researchers are already concerned about the eco-

logical footprint of Suzhou. Yang modified the EF model

and combined several social indicators with EF and

assessed the sustainable development status of Suzhou

from 1993 to 2002 [27]. Bai calculated the EF of the

Suzhou-Wuxi-Changzhou (SWC) region of Jiangsu

province and compared it with the global average level

[28]. EF in Suzhou was also applied in some other fields,

such as environmental assessment on urban planning and

analysis about the development pattern in Suzhou [29, 30].

In this paper, we calculated the total ecological footprint

(TEF) of Suzhou, China, from 1990 to 2009, a longer time

series, and attempted to simulate the TEF of the city by

BPANN model through this time series.

Materials and Methods

The Studied Area

Suzhou is one of the developed cities in Yangtze Delta

alongside Taihu lake in Jiangsu province, China (Fig. 1).

The city consists of 12 counties and covers an overall area

of 8,488.42 km2. In 2009 the total population of Suzhou

was 6.33 million, and from 1990 to 2009 the average annu-
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Fig. 1. Location of the studied area.



al population growth rate was 0.6408%. The gross domes-

tic products (GDP) in 2009 of the region reached 774 mil-

lion yuan and the percent of the secondary industrial prod-

ucts in GDP was 58.8%. The average annual GDP growth

rate reached 21.73% from 1990 to 2009. With the persistent

high growth speed of population and economy in the past

20 years, human influence on natural resources has been

increasing, pollution brought by socio-economic growth

was critically serious, and conspicuous conflicts appeared

between huge numbers of the population. Also, rapid eco-

nomic development and insufficient natural resources led to

increasing ecological damage.

Calculation of Total Ecological Footprint

The ecological footprint consists of two sections: bio-

logical resource consumption and energy consumption. In

this study, the basic calculation procedure follows the quan-

titative method for ecological footprint [31]. Equations (1)

and (2) are used in the TEF calculation.

...where EF is the average ecological footprint per capita

(gha/cap); j is the type of land being considered, which

includes arable land, pasture, forest, water, fossil energy

land, and built-up land; rj is the equivalence factor for the

jth land-type, and represents the ratio of the biological pro-

ductivity of the jth land-type to the global average biological

productivity for all types of bio-productive land, which

equals the average bio-productivity for the six types of

global land included in the present study [31]; i is the num-

ber of products being analyzed; UCi is the total consump-

tion for the ith product by city dwellers (kg/year); RCi is the

total consumption for the ith product by rural residents

(kg/year); UP is total urban population; RP is total rural

population; GPij is global biological yield for the ith prod-

uct provided by the jth land-type (kg/gha); and TEF is the

total ecological footprint in the studied area.

Back Propagation Artificial Neural Network 

BPANN, one kind of artificial neural network ANN,

was used to simulate the trend of TEF in Suzhou. ANNs

have been used to solve a wide variety of problems in sci-

ence and engineering, particularly for some areas where the

conventional modeling methods fail. A well-trained ANN

can be used as a predictive model for a specific application,

which is a data-processing system inspired by biological

neural systems. The predictive ability of ANN results from

training on experimental data and then validation by inde-

pendent data. The net has the ability to relearn and adapt for

improving its performance with the availability of updated

data [32].

An ANN model can accommodate multiple input vari-

ables to predict multiple output variables. It differs from

conventional modeling approaches in its ability to learn

about the system that can be modeled without prior knowl-

edge of the process relationships. The prediction by a well-

trained ANN is normally much faster than the conventional

simulation programs or mathematical models. However, the

selection of an appropriate neural network topology is

important in terms of model accuracy and model simplicity.

Among learning algorithms, back propagation algo-

rithm, proposed by Rumelhart and McCelland in 1986, is a

widely used learning algorithm in artificial neural net-

works. Error propagation consists of two passes through the

different layers of the network: a forward pass and a back-

ward pass. In the pass process, the input vector is applied to

the sensory nodes of the network and its effect propagates

through the network layer by layer. Finally, a set of outputs

is produced as the actual response of the network. During

the forward pass, the synaptic weights of the networks are

all fixed. But during the back pass, the synaptic weights are

all adjusted in accordance with the error correction rule.

The actual response of the network is subtracted from the

desired response to produce an error signal. This error sig-

nal is then propagated backward through the network

against the direction of synaptic conditions. The synaptic

weights are adjusted to make the actual response of the net-

work move closer to the desired response [32, 33].

The basic idea of using BPANN to simulate the TEF of

the city is the mapping principle of the model. For a set of

independent variables (the input of the net, denoted as vec-

tor Xi, i=1,2,…n) and a dependent variable (the output of

the net (denoted as vector Y), mapping relation can be

assumed to exist as equation (3), but the relation F is indis-

tinct.

(3)

To find optimal mapping value, the BPANN model con-

verts the input sets and the output sets into a nonlinear opti-

mization process. According to the combination of several

simple nonlinear functions, the model may establish a high-

tally nonlinear mapping relationship between Y sequence

and X sequence to realize the optimal approximation of

function F.

Data Sources and Their Reliability

The calculation of total ecological footprint demands

large amounts of data on human consumption and product

consumption. The primary consumption and population

data were obtained from Suzhou Statistical Yearbooks, as

well as from the results of annual surveys of nearly 200

households within the region, provided by Suzhou statisti-

cal bureau [34]. Other related coefficients used in the TEF

calculation were taken from the FAO Yearbook (1991-

2010) published by the United Nations Food and

Agriculture Organization [35]. Data sources concerning

impact factors from 1991 to 2010 were all taken from

Suzhou Statistical Yearbooks (1991-2010).
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There were inadequate data sources for emissions of

waste so the calculation of ecological footprints in this

study did not include the assimilation of wastes and the

consumption categories were not fully included. This limi-

tation of data availability led to underestimating the TEF.

Results

TEF of Suzhou from 1990 to 2009

Suzhou’s TEF from 1990 to 2009 was assessed by

equations (1) and (2). The development trends of EF and

TEF were shown in Fig. 2. The left scale on the vertical axis

referred to the value of EF. EF in Suzhou increased rapidly

from 1.299 gha per cap in 1990 to 5.995 gha per cap in

2009. Seeing the annual total ecological footprint continu-

ously increasing, it was of great importance to caution peo-

ple to pay close attention to regional sustainable develop-

ment while the economy was developing at high speed. 

EF was classified according to the customary EF cate-

gory approach into six types of land areas: arable land, pas-

ture, forest, water, fossil energy land, and built-up land. Fig.

3 shows the development trends of EF of the six types of

bio-productive areas and the corresponding contributions to

EF in Suzhou from 1990 to 2009. The consumption of fos-

sil energy land (EFfos) and built-up areas (EFb) increased

markedly and stood in absolute predominance in TEF (not

especially in 2000, but in 2008 and 2009). This might be

due to the speed of urban expansion and industrial devel-

opment after 2000.

TEF’s Impact Factors

EF represents the critical natural capital requirements of

a region in terms of the corresponding bio-productive areas.

Evidently, the total ecological footprint depends on the pop-

ulation size, residents’ living conditions, and some other

factors. Mohamed analyzed the EF of 140 nations and by

linear regression analysis they concluded that the nation’s

world system position and its urbanization level positively

influenced the indicator and that the distribution of

incomes, as measured by the Gini coefficient, was nega-

tively related to EF [36]. At the city level, Li selected six

indices: gross domestic product, total population, urbaniza-

tion level, total retail sales of consumer goods, total amount

of energy consumption, and expenditures by city residents

as TEF impact factors in Wuhan city, China [8]. Researchers

suggested that EF analysis should be connected with eco-

nomic and social indicators. But at various scales and in

diverse regions impact factors of TEF may be different.

Which factors should be taken into account in our TEF sim-

ulation using the BPANN model was still a question to us. 

We chose eighteen potential impact factors and made

the linear regression between TEF and all the subsets of

these potential factors by SAS software. Then, according to

statistical parameter analysis, the best subset was identified,

including seven independent variables as follows: gross

domestic product (GDP), tertiary industrial product (TIP),

secondary industrial product (SIP), urban population (UP),

rural population (RP), annual income of rural residents per

capita (IncR), and annual income of urban dwellers per

capita (IncU). In other words, these seven factors would act

as the drivers of the TEF in BPANN analysis. The develop-

ment trends of the seven factors in Suzhou were plotted in

Fig. 4. 

Simulation by BPANN

To develop the BPANN model for TEF simulation,

inputs to the model contained the values of the seven

impact factors from 1990 to 2009. These inputs were denot-

ed as P matrix with twenty columns and seven rows. The

output of the model was the TEF of Suzhou achieved by EF

methodology, denoted as T matrix with 20 columns and one

row. 
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Fig. 2. Development trends of EF and TEF.
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Data Preprocessing

Data Preprocessing Includes Two Steps.

Step 1:

Data Refining 

Generally, the larger the number of training samples,

the better the regression performance. There were only

20 sets of raw samples, whereas the BPANN model needs

multi input data to train, test, and validate the network.

So the raw data, including the TEF (the T matrix) and the

seven factors (the P matrix) were converted into 190 sam-

ples by equation (4). These 190 samples were character-

ized by INPUT matrix (7×190) and OUTPUT matrix

(1×190), which indicated the differences between the val-

ues of any two years. Then the input neurons are the

INPUT matrix, the differences of the same impact factor

between any two years and the OUTPUT matrix is the

output neurons, the differences of the TEF between the

corresponding two years.

(4)

Step 2: 

Data Normalization

To avoid the over fitting, especially when the data span

is big, it is necessary to standardize the input data set of the

model. The normalization method was used to preprocess

INPUT and OUTPUT. After the preprocess all the data val-

ues were between 0 and 1.

Samples Packeting

The model simulation process includes network train-

ing, test, and validation. Accordingly, the samples should be

divided into three packets: training samples, test samples,

and validation samples.

Shares of each sample set could all be adjusted as

desired. In the study, the validation samples and test sam-

ples were both assigned to 20 percent of the total input data,

and the percent of the training samples was 60. The samples

packeting process could be realized by calling the function

‘dividevec’ in MATLAB software (Appendix 1), which

could extract three classification data randomly in pairs

from the INPUT matrix and the OUTPUT matrix.

Network Topology 

After comparing the convergence of various network

topologies, we established the network with two hidden

layers. Thus the neural network included four layers: input

),(P),(P),(INPUT imjimkm

)(T)(T)(OUTPUT ijik     

m=1,2,…,7; i=1,2,…,20; j=1,2,…,20-i, k=1,...,190 
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layer, hidden layer 1, hidden layer 2, output layer. The num-

bers of hidden nodes were 20 and 40, respectively (Fig. 5).

Consequently, network topology in the simulation was 7-

20-40-1. 

Transfer Functions 

The log-sigmoid transfer function (‘logsig’) and hyper-

bolic tangent sigmoid transfer function (‘tansig’) are two

of the commonly used neural transfer functions, calculat-

ing a layer's output from its net input. The algorithms of the

two functions are listed in equations (5) and (6), respec-

tively.

a = logsig(n) = 1/(1 + exp(-n)) (5)

a = tansig(n) = 2/(1+exp(-2*n))-1 (6)

...where n is the input of the layer and a is the output of the

layer.

When data are transformed from one layer to the next

layer, transfer functions play the decisive role. In our

study, the transfer functions were ‘logsig,’ ‘tansig,’ and

‘vtansig,’ respectively. From input layer to hidden layer 1

the transfer function was ‘logsig,’ the transfer function

from hidden layer 1 to hidden layer 2 was ‘tansig,’ and the

transfer function from hidden layer 2 to output layer was

also ‘tansig.’

Training Function

The training function in the paper is gradient descent

with momentum back-propagation (‘traingdm’), which is a

network training function that updates weight and bias val-

ues according to gradient descent with momentum. The

function ‘traingdm’ allows a network to respond not only to

the local gradient, but also to recent trends in the error sur-

face. Acting like a low-pass filter, momentum allows the

network to ignore small features in the error surface.

Without momentum a network could get stuck in a shallow

local minimum, but with momentum a network might slide

through such a minimum. It can train any network as long

as its weight, net input, and transfer functions have deriva-

tive functions.

Gradient descent with momentum depends on two

training parameters. The parameter ‘lr’ indicates the learn-

ing rate, similar to the simple gradient descent. The para-

meter ‘mc’ is the momentum constant that defines the

amount of momentum. ‘mc’ is set between 0 (no momen-

tum) and values close to 1 (lots of momentum). A momen-

tum constant of 1 results in a network that is completely

insensitive to the local gradient and, therefore, does not

learn properly.

Back-propagation is used to calculate derivatives of

performance perf with respect to the weight and bias of

variable X. Each variable is adjusted according to gradient

descent with momentum using equation (7):

dX = mc*dXprev + lr*(1-mc)*dperf/dX (7)

...where mc is the momentum constant and the default value

of mc is 0.9, dXprev is the previous change to the weight or

bias.

Training stops when any of these conditions occurs: 

(1) The maximum number of epochs (repetitions) is

reached

(2) The maximum amount of time is exceeded

(3) Performance is minimized to the goal

(4) The performance gradient falls below min_grad (the

default value is 1e-10)

(5) Validation performance has increased more than

max_fail times (the default value is 5).

Simulation Preferences

The simulation parameters mainly consist of the max-

imum number of epochs (repetitions), the precision target

(goal), and the learning rate. In fitting preferences, the

learning rate should be set as a value as small as possible,

because if the value is too big the convergence process

might speed up at the beginning and fluctuate, resulting in

discrete in the end, when it is near the optimal point. In

our study, the maximum number of repetitions was

100,000, the precision goal was 0.005, and the learning

rate was 0.005. 

Model Fitting Performance

The training packet, validation packet, and test packet

included 114 samples, 38 samples, and 38 samples, respec-

tively. Performance of training, test, and validation is

shown in Fig. 6. The three packets had similar fitting char-

acteristics and trends. They converged very quickly before

epoch 2000 and then slowed down gradually to the set tar-

get steadily and smoothly. All the packets can reach the

required precision goal of mean square error 0.005 and the

best validation performance is 0.0041 at epoch 13326. 

Fig. 7 showed the fitting performance of the model. The

horizontal axis was the target of the simulation. The vertical

axis referred to the model’s outputs, simulating results. From

Fig. 7 (a-d), the differences between the simulation targets and

simulation outputs were described. All the outputs, including

training packet, validation packet and test packet, were high-

ly consistent with the targets and the dots in the figure dis-

tributed close to the line “Y=T.” In the regression formulae

“output=m*target+n” describing the relationship between the

outputs and the targets, the values of coefficient “m” were all

bigger than 0.9, which means the fitting is accurate.

The simulation progress went through 2 minutes and 47

seconds and the times of validation check was zero (the

default max_fail times value is 5). Values of every output in

the simulation were at an acceptable level with a fast con-

vergence rate, short simulating time, few validation times,

and high precision. Thus the connection weight coefficients

and the offset had been determined. The complex corre-
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sponding relationship between the seven socioeconomic

factors and the TEF of the city could be established by the

BPANN model. 

Discussion

BPANN Model in Simulating 

the TEF of Suzhou

BPANN model was established to fit and simulate the

total ecological footprint for Suzhou. The model is different

from the traditional statistical regression models. The dif-

ferences lie mainly in the following points.

(1) BPANN can express the nonlinear indistinct relation-

ship between the TEF and the related impact factors.

The development trend of TEF in one region is always

complicated. The impact factors are multivariate and

the process of influence is complex. These uncertainties

determine that the impact on the TEF by social and eco-

nomic factors is multi-dimensional. The relationship

can’t be objectively described by a simple linear model.

But nonlinear mathematical expression seems to be

very difficult. The BPANN model can overcome these

difficulties and express the nonlinear mapping relation-

ship.

(2) The BPANN model showed high precision and validity

in fitting the development trend of the TEF for Suzhou

from 1990 to 2009. Because the model applies the neur-

al network tool with strong nonlinear approximation

function and uses the back-propagation algorithm with

the correction effect, the model is able to achieve the

accuracy and validity goals set in advance if the training

sample data are enough and the quality of the data is

ensured to be qualified.

(3) The BPANN model can adjust the weights automatical-

ly according to various factor performances in the

TEF’s evolution trend during the process of learning

and training, which can’t be achieved by statistical

regression models. So the model can effectively avoid

the lack of mistakes in index selection and some other

problems in general regression analysis.

At the same time we realized that the model had some

objective limitations and defects. The BPANN model is

prone to appear as the phenomenon of over-learning and

over-fitting and thus the generalization ability of the model

will be reduced. But we can attempt to avoid over-fitting by

setting the validation samples in the training process. We

can also increase the training sample size and select data

with a strong representation deliberately when necessary so

that the network can learn the internal principles of the sam-

ples accurately and the generalization ability can be greatly

improved. 

It is noted that the total ecological footprint of one

region is a complex indicator, so whether the model can be

used in other cities or other spatial scales should be further

studied, and whether the model can be applied in the long

term prediction also needs to be verified.

The Overall Development Trend of Suzhou’s Total

Ecological Footprint

Suzhou bore an accumulative TEF of 37.97 million gha

in 2009, which is 3.05 times that in 2000 and 5.22 times that

in 1990. More and more of the natural resources required to

support this rapid development will be obtained from out-

side the city. 

It was found that the development trends of the six

main categories of bio-productive areas demanded and

the corresponding contributions to the TEF in Suzhou

from 1990 to 2009 were not equilibrium (Fig. 3). Arable

land areas and pasture areas in EF remained approxi-

mately constant; forest areas and water areas increased

slightly and gradually for the whole period; and the con-

sumption of fossil energy land and built-up areas

increased markedly and stood an absolute predomi-

nance in TEF, especially in the 2000s. These trends sug-

gested that consumption on people’s living in Suzhou

remained stable over the past 20 years, which was con-

sistent with the perception of the residents in Suzhou.

The driver of TEF’s rocketing was mainly from energy

consumption. 

Most commonly a city’s major energy consumption lies

in secondary industrial production and urban construction.

In Suzhou, the development trends of fossil energy land

consumption and industrial products were nearly consistent

before 2007 (Fig. 8). That is to say, industrial production

might be the largest contribution to TEF rocketing upward

in Suzhou. Thankfully in 2008 and 2009 the growth rate of

fossil energy land consumption was more gentle than that

of industrial products.

Not surprisingly, the sustainable development of

Suzhou city will face great challenges in the future. In order

to retain sustainable development of the city, the local gov-

ernment in Suzhou can make relevant regional strategic

plans for the city’s management and development. The

analysis suggested two main strategies for the local gov-

ernments: 

(1) It must enhance energy efficiency and develop the high-

tech industry. 

(2) It must adjust the economic structure gradually, reduc-

ing the share of secondary industrial products and rais-

ing the portion of tertiary industries in GDP that con-

sume fewer natural resources so as to restore Suzhou to

the sustainable development track.

Conclusions

In this paper we calculated TEF of Suzhou from 1990

to 2009. In 2009 Suzhou’s TEF was 37.97 million gha, 3.05

times that in 2000, and 5.22 times that in 1990. The devel-

opment trends of the six main categories of bio-productive

areas demanded and the corresponding contributions to the

TEF in Suzhou from 1990 to 2009 were not equilibrium.

The driver of TEF’s rocketing lay mainly in increasing

energy consumption.
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The BPANN model attempted to fit the development

trend of the TEF. The model can reflect the complex map-

ping relationship between the TEF and its associated

impact factors to a certain extent. In this study, seven

socioeconomic indicators were determined as the drivers of

the TEF of the city by linear regression analysis between

TEF and all the subsets of the potential factors. These seven

independent variables were gross domestic products

(GDP), tertiary industrial products (TIP), secondary indus-

trial products (SIP), urban population (UP), rural popula-

tion (RP), annual income of rural residents per capita

(IncR), and annual income of city dwellers per capita

(IncU). By model performance analysis, we concluded that

the BPANN model can simulate the development trend of

TEF for Suzhou precisely from 1990 to 2009. It is feasible

to simulate the TEF in this time series.
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Fig. 6. Performance of train, test, and validation.

       

       
Fig. 7. Regression of the outputs and targets in the simulation.
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